
L

Manual

Global Drive

IEC 61131-3 programming

Drive PLC Developer Studio
Introduction to

Global Drive
PLC Developer Studio

Important note:

The software is supplied to the user as described in this document. Any risks resulting from its quality or use remain the responsibility
of the user. The user must provide all safety measures protecting against possible maloperation.

We do not take any liability for direct or indirect damage, e.g. profit loss, order loss or any loss regarding business.

� 2003 Lenze Drive Systems GmbH

No part of this documentation may be copied or made available to third parties without the explicit written approval of Lenze Drive
Systems GmbH.

All information given in this online documentation hasbeencarefully selectedand tested for compliancewith thehardware andsoftware
described. Nevertheless, discrepancies cannot be ruled out. We do not accept any responsibility or liability for any damage that may
occur. Required corrections will be included in updates of this documentation.

All product names mentioned in this documentation are trademarks of the corresponding owners.

Version 2.0 09/2003

Introduction to IEC 61131-3 programming
Contents

1l DDS-IEC61131 EN 2.0

1 Preface and general information 2. .

1.1 For further information on IEC 61131-3 programming 2. .

2 The software model 3. .

2.1 Resources within a configuration 3. .
2.1.1 Tasks 3. .

2.2 Program Organization Units, POUs 4. .
2.2.1 Programs 4. .
2.2.2 Function blocks 5. .
2.2.3 Functions 6. .

2.3 Control restart 7. .

3 The communication model 8. .

3.1 Access paths 8. .

3.2 Global variables 8. .

3.3 Call parameters 8. .

3.4 Communication organization units 8. .

4 General language elements 9. .

4.1 Identifiers 9. .

4.2 Keywords 9. .

4.3 Comments 9. .

4.4 Literals 9. .

4.5 Data types 10. .

4.6 Variables 11. .

5 Programming languages 12. .

5.1 Instruction List (IL) 12. .

5.2 Structured Text (ST) 13. .

5.3 Sequential Function Chart (SFC) 14. .

5.4 Function Block Diagram (FBD) 16. .

5.5 Ladder Diagram (LD) 16. .

6 Appendix 18. .

6.1 IEC keywords 18. .

6.2 Conventions for Lenze variable identifiers 20. .
6.2.1 System block designation 20. .
6.2.2 Indication of the variable type 21. .
6.2.3 Indication of the data type 21. .
6.2.4 Identifier 22. .
6.2.5 Indication of the signal type 22. .
6.2.6 Examples of variable identifiers 22. .

6.3 Glossary 23. .

Introduction to IEC 61131-3 programming
Preface and general information

2 lDDS-IEC61131 EN 2.0

1 Preface and general information
This Manual informs about the standard IEC 61131-3.

The IEC 61131-3 standard is the basis for uniform PLC programming that enables the user

• to use already tested and standardized software components again.

• to apply software engineering methods for the generation of these components.

• to consider problem solutions from a complex point of view.

• to abstract complex tasks in smaller modules.

• to define interfaces unambiguously.

• to transfer progams more easily to other systems.

The programming languages used in the Drive PLC Developer Studio meet the requirements
of the IEC 61131-3 standard.

In many cases, the Introduction also lists the international terms (in italics in brackets) in addition to
the German terms.

1.1 For further information on IEC 61131-3 programming

• see the Manual Drive PLC Developer Studio

• see the homepage of PLCopen: www.plcopen.org

www.plcopen.org

Introduction to IEC 61131-3 programming
The software model

3l DDS-IEC61131 EN 2.0

2 The software model
The software model of IEC 61131-3 describes the concepts of configuration, resource, task,
program, function block and function and their connection.

For the definition of these terms, the standard is based on a maximum powerful PLC providing the
following features:

• Mulit-processor can be used

• Multi-tasking is possible

• Unlimited number of analog and digital inputs and outputs

• Communication with other PLCs and PCs is possible

2.1 Resources within a configuration

The highest level in the software model is the configuration (configuration), which defines the unit
structure. This unit can be, for instance, a PLC with several CPUs connected.

A configuration contains one or several resources (resources), which form a CPU.

The programs of the resource are controlled by tasks which represent an executable program unit.

Configuration

Resource

Task

Resource Resource

Task Task
DDS001

Fig. 1 A configuration with several resources which can contain independent tasks.

2.1.1 Tasks

Tasks can be processed periodically or because of a certain event. They have a priority which
defines the assignment of CPU times within the resource.

There are several task types:

• Cyclic tasks

• Time-controlled tasks (INTERVAL tasks)

• Event-controlled tasks (EVENT tasks)

• Interrupt tasks

A task declaration consists of the task name, its priority, and a condition on which the task is to be
executed.

The condition can be a time interval, an event (rising signalat adigital input orFALSE/TRUE transition
of a global variable) or an interrupt.

Every task can be assigned to severalprograms whichare to be activated by the task. Theprograms
are processed in the sequence indicated.

The following rules apply to the execution of a task:

• The task with the condition that has been met will be executed when, for instance, the interval
time indicated is over or the variable addressed changes from FALSE to TRUE.

Introduction to IEC 61131-3 programming
The software model

4 lDDS-IEC61131 EN 2.0

• If several tasks fulfill the condition, the task with the highest priority will be executed.

• It is not possible to assign the same priority to several tasks.
(Exception: Priority 0 = Task inhibited)

• If a task with a higher priority meets the condition while another task is being processed, the
task with the lower prority will be interrupted and only be processed after the other task has
been completed.

2.2 Program Organization Units, POUs

IEC1131-3 defines programs (programs), function blocks (function blocks)and functions (functions)
as program organization units or POUs (Program Organization Units, POUs).

The features of a POU enable a wide modularization of user programs and the reuse of software
modules already implemented and tested. At least the declaration of the request interface is
required to enable program modules to access a POU. After its declaration, a POU is available to
all other POUs.

Task

Program

Function Block

Program Program

Function

Function Block Function Function
DDS002

Fig. 2 Structuring of program organization units (POUs) in programs, function blocks and functions

2.2.1 Programs

The run-time features of the entire program, which can run in a CPU, are determined by the
assignment of programs to a task. A program can be assiged to several tasks, i.e. several instances
of the program are generated with different run-time features. One of the programs is the main
program and is assigend to the PLC periphery, global variables and access paths.

Introduction to IEC 61131-3 programming
The software model

5l DDS-IEC61131 EN 2.0

2.2.2 Function blocks

The IEC 61131-3 standard uses standard functions and function blocks to standardize typical PLC
functions. This ”Standard library” is an important basis for uniform, manufacturer-independent
programming of PLC systems.

Function blocks (FBs) can be compared with integrated circuits, which include a certain control
function. They are used to set inputs/outputs and internal variables. The status of a function block
request is saved from cycle to cycle. Only the input and output variables of the function can be
addressed by the request program. A function block can also be called by another function block.

Instancing of function blocks

IEC 61131-3 provides the instancing of function blocks. An instance is a structure which saves all
internal input and output variables when a function block is called.

A program which calls FB1 three times has three instances of FB1, one for each call. The program
can thus be evaluated precisely on request and without any side effects. Please observe that all
instances use the same program code, i.e. changes of the program code have the same effect on
al three requests.

Software tools like the Drive PLC Developer Studio help instancing by means of an automatic
declaration: An instance name is specified for an FB call. This name manages the data structure of
the call.

Overview: IEC 61131-3 standard function blocks

Bistable function blocks

SR/RS Bistable function block (dominant set/reset)

SEMA Software semaphore (interruptable)

Signal detection

R_TRIG/F_TRIG Detector of rising/falling signals

Counters

CTU/CTD Up-counter/down-counter

CTUD Up and down counter

Timers

TP Pulse encoder

TON/TOF Timer on-delay/timer off-delay

Introduction to IEC 61131-3 programming
The software model

6 lDDS-IEC61131 EN 2.0

2.2.3 Functions

Unlike FBs, functions cannot buffer their internal values. Thus, they cannot use global variables,
access function blocks and declare directly addressable variables. All functions have in common
that they return the same output parameters if the input parameters are the same.

Overview: IEC 61131-3 standard functions

Type conversion functions

..._TO_... Conversion between integers

BOOL_TO BOOL � Type X

TO_BOOL Type X � BOOL

TIME_TO / TIME_OF_DAY TIME / TIME_OF_DAY � Type X

DATE_TO / DT_TO DATE / DATE_AND_TIME � Type X

STRING_TO STRING � Type X

TRUNC REAL � INT

Numeric functions

ABS Absolute value

SQRT Square root

LN Natural logarithm

LOG Logarithm to the base 10

EXP Exponential function

SIN Sine calculation in rad

COS Cosine calculation in rad

TAN Tangent calculation in rad

ASIN Arcus sine calculation in rad

ACOS Arcus cosine calculation in rad

ATAN Arcus tangent calculation in rad

EXPT Exponentiation of one variable with another

STRING functions

LEN Indicates the string length

LEFT Shows a left initial string

RIGHT Shows a right initial string

MID Shows a part of a string

CONCAT Concatenation (connection) of two strings

INSERT Inserts a string at a certain position into another string

DELETE Deletes a part of a string

REPLACE Replaces a part of a string by another part

FIND Finds a part of a string

Introduction to IEC 61131-3 programming
The software model

7l DDS-IEC61131 EN 2.0

Overview: IEC 61131-3 standard operators

Arithmetic operators

ADD Addition

MUL Multiplication

SUB Subtraction

DIV Division

MOD Remainders

EXP Exponentiation

MOVE Assignment

Bit-shift operators

SHL Shift to LHS

SHR Shift to RHS

ROR CW rotation

ROL CCW rotation

Bit-string operators

AND Bit-by-bit AND of bit operands

OR Bit-by-bit OR of bit operands

XOR Bit-by-bit XOR of bit operands

NOT Bit-by-bit NOT of bit operands

Selection operators

SEL Binary selection

MAX Maximum

MIN Minimum

LIMIT Limit

MUX Multiplexer

Comparison operators

GT Higher than

LT Lower than

LE Lower or equal

GE Higher or equal

EQ Equal

NE Not equal

2.3 Control restart

The software model of IEC 61131-3 also defines the restart behaviour of the control.

Cold start

With cold starts, the program is loaded again. All variables are reset to their initial value. They either
use a standard initial value (e.g. 0 or FALSE) or the initial value indicated in the variable declaration
(optionally). All tasks of the resource are started.

Warm start

With warm starts (restarts), variables are not set to their inital value but continue with the value saved
before the interruption.

Introduction to IEC 61131-3 programming
The communication model

8 lDDS-IEC61131 EN 2.0

3 The communication model
The communication model of IEC 61131-3 describes the data exchange of configuration elements
by means of

• access paths

• global variables

• call parameters

• communication organization units (IEC 61131-5)

These unambiguously defined interfaces support the modularization and thus the reuseability of
program parts.

3.1 Access paths

Defined access paths enable the configuration elements to communicate with each other and PLC
systems.

3.2 Global variables

Global variables enable easy communication between programs. They can be declared and used
in a configuration, resource and program.

3.3 Call parameters

Within a program, data is exchanged by means of call parameters, i.e. input and output variables.
Call parameters define interfaces for value transfers.

3.4 Communication organization units

Communication organization units provide communication services which are defined in part 5 of
IEC 61131 (in preparation).

Introduction to IEC 61131-3 programming
General language elements

9l DDS-IEC61131 EN 2.0

4 General language elements
General language elements of IEC 61131-3are identifiers, keywords, comments, literals, data types
and variables. They are described in detail in the following sub-sections:

4.1 Identifiers

Identifiers are used to address variables, functions, programs, etc. They are elements and can
support the readability of programs.

• Identifiers are a sequence of letters, digits and underscores starting with a letter or an
underscore.

Identifiers must not

• include spaces and umlaute.

• be declared twice in the same way.

• be identical with keywords.(�Chapter 4.2)

Tip!
The conventions used for the variable identifiers of Lenze system blocks, function blocks and
functions are described in the appendix. (� 20)

4.2 Keywords

Keywords are unambiguous character combinations which are used as individual syntax elements.

• Keywords must not be used as identifiers.

Examples of keywords to IEC 61131-3

ABS, SIN, BOOL, FALSE, TRUE, FOR, NEXT, IF, THEN, VAR, GLOBAL, DATE, TIME, FUNCTION

4.3 Comments

Comments or program parts help to understand the program and are important communication
means. Comments are allowed in all text editors at any place and must start and end with a special
character sequence (* and *). Every network can be commmented to document its functionality.

4.4 Literals

IEC 61131-3 describes literals as a sequence of characters, digits or times.

Character sequences

Character sequence literals have 0or morecharacters and start and end with inverted commas (e.g.
’Character sequence’).

Digits

There are two different numerical literals: integers and reals.

Introduction to IEC 61131-3 programming
General language elements

10 lDDS-IEC61131 EN 2.0

Integers can be defined with a basis, decimal numbers can also have a sign (+ or -). Reals can also
be indicated with exponents.

Identification Example

Integers

decimal 10

binary 2# 2#1010

octal 8# 8#12

hexadecimal 16# 16#A

Reals

without exponent -12.50

with exponent E 15.7E4

Times

There are two different time literals: Duration and time of day/date.

Identification Example

Duration T# or TIME# T#10ms

Time of day/date

Date D# or #DATE D#1999-08-29

Time of day TOD# or #TIME_OF_DAY TOD#15:36:30

Date and time of day DT# or #DATE_AND_TIME DT#1999-08-29-15:36:30

4.5 Data types

IEC 61131-3 defines different standard data types. They help to compile derived and user-defined
data types. Each identifier is assigned to a data type. The type determines how much memory is
to be reserved and which values correspond to the memory contents.

Standard data types

• BOOL (truth values TRUE/FALSE)

• BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT (integer data types)

• REAL (floating point data type)

• STRING (character string)

• TIME, TIME_OF_DAY, DATE, DATE_AND_TIME (time data types)

Defined data types:

• ARRAY (one, two, three-dimensional field)

• POINTER (contains addresses of variables/function blocks for the run-time of the program)

• Enumeration (enumerated, consists of many string constants)

• STRUCT (structure)

• Reference (generates an alternative name for a variable/constant/function block)

Introduction to IEC 61131-3 programming
General language elements

11l DDS-IEC61131 EN 2.0

4.6 Variables

IEC 61131-3 defines five different variable classes:

• Global variables

• Local variables

• Input variables

• Output variables

• Input and output variables

Local variables do not have a connection to the outside, i.e. they can only be addressed from within
a program part; global variables can be addressed from all POUs.

Input, output and input/output variables are related to a program, function or function block. They
can be changed by reading and writing within the assigned POU; outside the POU, the change must
be defined (input, output and input/output).

The variables are declared between the keywords VAR and END_VAR in the source text. In general,
every variable is initialized after a cold restart. Thedefault value is usually 0 orFALSE. Auser-specific
initialization with another value is possible with the sign ”:=” in the declaration.

Variable attributes

The following attributes can be used additionally when declaring a variable:

• RETAIN: These variables remain the same even after a power failure. The program continues
with the values saved when being restarted.

• CONSTANT: Variable values cannot be changed.

• AT: Variables have a fixed location in the memory map (fixed address).

Example: Declaration of an output variable with initialization value

VAR_OUTPUT
par_out1 : INT := 10; (* Output parameter 1 with start value 10

*)
END_VAR

Fixedly addressed variables

Variables can be assigned to a physical memory location (PLC) by means of the keyword AT when
being declared.

The address is indicated as a special character sequence. The character sequence starts with a
percentage sign ”%” followed by a range prefix and a prefix (data type) for size and ends with a digit
sequence which indicates the memory location.

Range prefixes: I (Input), Q(Output), M(Marker, internal memory range)

Size prefix: X (Single bit), B(Byte, 8 bits), W(Word, 16 bits), D(Double word, 32 bits)

Examples: %QX1.0.2 Output bit 2
%IW1.0.1 Input bit 1
%MB7 Marker byte 7
%MW1 Marker word 1
%MD3 Marker double word 3
%MX1.2 Third marker bit in marker word 1

Introduction to IEC 61131-3 programming
Programming languages

12 lDDS-IEC61131 EN 2.0

5 Programming languages
IEC 61131-3 defines the following five programming languages:

• IL: Instruction List (Instruction List, IL)

• ST: Structured Text (Structured Text)

• SFC: Sequential Function Chart (Sequential Function Chart, SFC)

• FBD: Function Block Diagram (Function Block Diagram, FBD)

• LD: Ladder Diagram (Ladder Diagram, LD)

Eachof these languages is used for special applications which areparticularly suited to solvecertain
problems.

5.1 Instruction List (IL)

(Instruction List, IL)

Instruction List can be compared with Assembler and consists of a sequence of instructions.

• Every instruction starts with a new line, contains an operator and, depending on the
operation, one or several operands separated by commas.

• An identifier marker followed by a colon (:) can be in front of an instruction.

• Comments can be entered additionally.

• It is possible to insert empty lines between the instructions.

Example:

LD 17
ST lint (* Comment*)
GE 5
JMPC next
LD idword
EQ istruct.sdword
STN test
next:

Introduction to IEC 61131-3 programming
Programming languages

13l DDS-IEC61131 EN 2.0

5.2 Structured Text (ST)

(Structured Text)

Structured Text consists of instructions which can be executed like in high languages with
conditions (IF..THEN..ELSE) or in loops (WHILE..DO).

Structured Text is an easily readable and understandable programming language that does not only
offer powerful loop programming and the possibility of conditioned commands but also imaging
mathematical functions.

Example:

IF value < 7 THEN
WHILE value < 8 DO

value := value + 1;
END_WHILE;

END_IF;

Instructions (overview)

Type of instruction Example

Assignment by assignment operator A:=B;
CV:=CV + 1;
C:=SIN(X);

Call of a function block,
use of an FB

CMD_TMR(IN:=%IX5, PT:=300);
A:=CMD_TMR.Q

RETURN RETURN;

IF condition D:=B*B;
IF D<0.0 THEN

C:=A;
ELSIF D=0.0 THEN

C:=B;
ELSE
C:=D;
END_IF;

CASE selection CASE INT1 OF
1: BOOL1:=TRUE;
2: BOOL2:=TRUE;

ELSE
BOOL1:=FALSE;
BOOL2:=FALSE;

END_CASE;

FOR loop J:=101;
FOR I:=1 TO 100 BY 2 DO

IF ARR[I]=70 THEN
J:=I;
EXIT;

END_IF;
END_FOR;

WHILE loop J:=1;
WHILE J<=100 AND ARR[J]<>70 DO

J:=J+2;
END_WHILE;

REPEAT loop J:=-1;
REPEAT

J:=J+2;
UNTIL J= 101 OR ARR[J]=70
END_REPEAT;

EXIT EXIT;

Empty instruction ;

Introduction to IEC 61131-3 programming
Programming languages

14 lDDS-IEC61131 EN 2.0

5.3 Sequential Function Chart (SFC)

(Sequential Function Chart, SFC)

Sequential Function Chart is a graphically oriented language that enables the description of a time
sequence of different actions within a program.

An organization unit written in SFC consists of steps which are linked by means of directed
connections (transitions).

Fig. 3 Example of a network in SFC

The graphical representation of transitions and steps reminds of a flow chart, is easily readable and
perfectly suitable for programming higher level status sequences.

Steps

Steps consist of flags and one or several actions or Boolean variables.

• The actions of steps are separated from the steps and can be used repeatedly in an
organization unit.

• Qualifiers activate and deactivate actions and Boolean variables (sometimes with time delay).

• Concurrences are possible because an action can still be active when the next step is already
being processed, e.g. the qualifier S (set).

Actions

Actions can contain instructions in IL or ST, networks in FBD or LD, or a sequential function (SFC).

Introduction to IEC 61131-3 programming
Programming languages

15l DDS-IEC61131 EN 2.0

Transitions

Transitions are between steps. A step that follows a transition is activated if the transition condition
is TRUE.

The following transition conditions are possible:

• Boolean variable

• Boolean address

• Boolean constant (TRUE)

• A sequence of instructions with a Boolean result in ST syntax ((i<=100) AND b)

• A sequence of instructions programmed in any language

Alternative branches

In SFC, two or more branches can be defined as alternative branches.

• Every alternative branch must start and end with a transition.

• Alternative branches can contain parallel branches and other alternative branches.

• An alternative branch starts with a horizontal line (alternative start) and ends with a horizontal
line (alternative end) or a jump.

• If the step before the alternative start line is active, the first transition of every alternative
branch is evaluated from left to right. The first transition from the left that meets the transition
condition TRUE is opened and all following steps are activated.

Parallel branches

In SFC, two or more branches can be defined as parallel branches.

• Every parallel branch must start and end with a step.

• Parallel branches can contain alternative branches or other parallel branches.

• A parallel branch starts with a double line (parallel start) and ends with a double line (parallel
end) or a jump.

• If the step before the parallel start line is active and the transition condition after this step is
TRUE, then the first steps of all parallel branches are activated. These branches are
processed in parallel.

• The steps after the parallel end line are activated if all steps before are active and the
transition condition of this step is TRUE.

Jumps

A jump is a connection with the step whose name is indicated under the jump symbol.

Jumps are necessary because it is not allowed to create upwards or crossing connections.

Introduction to IEC 61131-3 programming
Programming languages

16 lDDS-IEC61131 EN 2.0

5.4 Function Block Diagram (FBD)

(Function Block Diagram, FBD)

Function Block Diagram is a graphically oriented programming language.

It works with a list of networks. Each network has a structure which represents a logic or arithmetics,
a function block request, jump or a return instruction. Function block outputs are connected with
inputs of following function blocks. Jumps facilitate programming.

Based on defined function blocks, the Function Block Diagram enables the user to implement any
program sequence by means of connection elements. Furthermore, the schematic representation
of the data flow helps to understand program sequences.

As known from the 9300 Servo PLC and Drive PLC, many hardware components are offered with
the corresponding function blocks. That means that there are corresponding modules for both
levels, hardware and software.

Fig. 4 Example of a network in FBD

5.5 Ladder Diagram (LD)

(Ladder Diagram, LD)

Ladder Diagram is a graphically oriented programming language, similar to the principle of an
electric circuit.

On the one hand, Ladder Diagrams are used to build up logic circuits, on the other hand, they can
also be used to create networks (like in FBD). Thus, the Ladder Diagram is perfectly suitable to
control the request of organization units.

Ladder Diagrams consist of several networks.

A network is limited by vertical current leads on both ends. In between, there is a circuit diagram
consisting of contacts, coils and connection lines which transmit the status ”ON” and ”OFF” from
left to right (TRUE or FALSE):

Fig. 5 Example of a network in LD

Introduction to IEC 61131-3 programming
Programming languages

17l DDS-IEC61131 EN 2.0

Contacts

If a Boolean variable of a contact has the value TRUE, the status ”ON” is transmitted via the
connection line from left to right. Otherwise, the right connection is set to ”OFF”.

• Contacts can be switched in parallel. For this, one of the parallel branches must transmit the
value ”ON”.

• Contacts can also be switched in series. For this, all contacts must transmit the status ”ON”.

• Contacts can also be negated (indicated by a slash in the contact symbol). The contact
transmits the input status if its status is ”OFF” (FALSE) ist.

Coils

In LD, an unlimited number of coils is available on the right side of a network (indicated by brackets).

• A coil transmits the connection value from left to right and copies the value to the
corresponding Boolean variable.

• The start line can be set to ”ON” or ”OFF” (depending on the Boolean values TRUE or FALSE).

• Coils can only be connected in parallel.

• Coils can also be negated (indicated by a slash in the contact symbol). They then copy the
negated value to the corresponding Boolean variable.

Set/reset coils

Coils can also be defined as set or reset coils.

A set coil (indicated by the letter ”S” in the coil symbol)can have the status ”ON”, but cannot be reset
to ”OFF”.

• If the Boolean variable of the set coil has been set to TRUE, it cannot be reset to FALSE.

A reset coil (indicated by an ”R” in the coil symbol) can have the status ”OFF”, but cannot be reset
to ”ON”.

• If the Boolean variable of the reset coil has been set to FALSE, it cannot be reset to TRUE.

Function blocks in LD

In addition to contacts and coils, it is also possible to enter function blocks and programs in LD.

Function blocks and programs must have an input and output with Boolean values in the network.
They can be used at the same locations as the contacts, i.e. on the left side of the LD network.

Introduction to IEC 61131-3 programming
Appendix

18 LDDS-IEC61131 EN 2.0

6 Appendix

6.1 IEC keywords

Keywords are unique character combinations used as individual syntax elements.

• Keywords must not be used as identifiers.

• Keywords under the Drive PLC Developer Studio also include the names of Lenze function
blocks, that always start with ”L_” (L_ABS , L_ADD , ...).

Keywords reserved for IEC 61131-3 programming languages:

ABS ACOS ACTION ADD AND ANDN
ANY ANY_BIT ANY_DATE ANY_INT ANY_NUM ANY_REAL
ARRAY ASIN AT ATAN

BOOL BY BYTE

CAL CALC CALCN CASE CD CDT
CLK CONCAT CONFIGURATION CONSTANT COS CTD
CTU CTUD CU CV

DATE DATE_AND_TIME DELETE DINT DIV DO
DS DT DWORD

ELSE ESIF END_ACTION END_CASE END_CONFIGURATION END_FOR
END_FUNCTION END_FUNCTION_BLOCK END_IF END_PROGRAM END_REPEAT
END_RESOURCE END_STEP END_STRUCT END_TRANSITION END_TYPE END_VAR
END_WHILE EN ENO EQ ET EXIT
EXP EXPT

FALSE F_EDGE F_TRIG FIND FOR FROM
FUNCTION FUNCTION_BLOCK

GE GT

IF IN INITIAL_STEP INSERT INT INTERVAL

JMP JMPC JMPCN

L LD LDN LE LEFT LEN
LIMIT LINT LN LOG LREAL LT
LWORD

MAX MID MIN MOD MOVE MUL
MUX

N NE NEG NOT

OF ON OR ORN

P PRIORITY PROGRAM PT PV

Introduction to IEC 61131-3 programming
Appendix

19L DDS-IEC61131 EN 2.0

Q Q1 QU QD

R R1 R_TRIG READ_ONLY READ_WRITE REAL
RELEASE REPEAT REPLACE RESOURCE RET RETAIN
RETC RETCN RETURN RIGHT ROL ROR
RS RTC R_EDGE

S S1 SD SEL SEMA SHL
SHR SIN SINGLE SINT SL SQRT
SR ST STEP STN STRING STRUCT
SUB

TAN TASK THEN TIME TIME_OF_DAY TO
TOD TOF TON TP TRANS TRUE
TYPE

UDINT UINT ULINT UNTIL USINT

VAR VAR_ACCESS VAR_EXTERNAL VAR_GLOBAL VAR_INPUT VAR_IN_OUT
VAR_OUTPUT

WHILE WITH WORD

XOR XORN

Introduction to IEC 61131-3 programming
Appendix

20 LDDS-IEC61131 EN 2.0

6.2 Conventions for Lenze variable identifiers

This chapter describes the conventions used for the variable identifiers of Lenze system blocks,
function blocks and functions. The conventions ensure uniform and universal labelling and make
reading the PLC program easier.

Tip!
The conventions used by Lenze are based on the ”Hungarian Notation”. This ensures that the most
significant characteristics of a variable (e.g. the data type) can be instantly recognized from its
identifier.

An identifier consists of

• a system block designation (only for identifiers of system block variables)

• a variable type entry (optional)

• a data type entry

• an identifier (the ”proper” name of the variable)

• a signal type entry (optional)

6.2.1 System block designation

(only for identifiers of system block variables)

The inputs/outputs of a system block are directly accessed via the corresponding I/O variables.

To indicate to which system block the I/O variables are assigned, the name of the corresponding
system block followed by an underscore is written before the identifier.

Examples of system block designations:

AIN_

CAN1_

DIGIN_

Introduction to IEC 61131-3 programming
Appendix

21L DDS-IEC61131 EN 2.0

6.2.2 Indication of the variable type

The indication of the variable type is optional. It can be used to indicate the variable type in the
identifier:

Variable type entry (optional) Meaning

I_ VAR_INPUT

Q_ VAR_OUTPUT

IQ_ VAR_IN_OUT

R_ VAR RETAIN

C_ VAR CONSTANT

CR_ VAR CONSTANT RETAIN

g_ VAR_GLOBAL

gR_ VAR_GLOBAL RETAIN

gC_ VAR_GLOBAL CONSTANT

gCR_ VAR_GLOBAL CONSTANT RETAIN

6.2.3 Indication of the data type

The data type entry provides information about the data type of a variable:

Data type entry Meaning

b Bool

by Byte

n Integer

w Word

dn Double Integer

dw Double Word

s String

f Real (Float)

sn Short Integer

t Time

un Unsigned Integer

udn Unsigned Double Integer

usn Unsigned Short Integer

If the variable is an array or a pointer, this will be indicated before the data type entry:

Data type entry (optional) Meaning

a Array (combined type), field

p Pointer

Examples of data type entries:

aby (Array of data type Byte)

dn (Double Integer)

pdn (Pointer to Double Integer)

Introduction to IEC 61131-3 programming
Appendix

22 LDDS-IEC61131 EN 2.0

6.2.4 Identifier

The identifier is the proper name of a variable and should indicate the application or function of the
variable.

• Identifiers always start with a capital letter.

• If an identifier is assembled from several ”words”, then each ”word” must start with a capital
letter.

• All other letters are written in lower case.

Examples of identifiers:

JogValue

NumberOfValues

CurrentSelectedJogValue

6.2.5 Indication of the signal type

In general, it is possible to assign a certain signal type to the inputs and outputs of Lenze function
blocks/system blocks. There are digital, analog, position and speed signals.

A corresponding ending (preceded by an underscore) is added to the identifier of the input/output
variable to indicate the signal type.

Signal type Ending Memory Normalization
(external value ≡≡≡≡ internal value)

Previous
designation

analog _a (analog) 16 bits 100 % ≡ 16384 �

digital _b (binary) �

Phase-angle difference or
speed

_v (velocity) 16 bits 15000 rpm ≡ 16384 �

Phase-angle or position _p (position) 32 bits 1 motor revolution ≡ 65535 �

6.2.6 Examples of variable identifiers

Variable identifier Assigned
system block

Variable type Data type Signal type Application/function

g_anFixSetSpeedValue_a - VAR_GLOBAL Array (Integer) analog Array for fixed setpoints

CAN2_nOutW1_a CAN2_IO - Integer analog Output word 1 of CAN2_OUT

AOUT1_nOut_a AOUT1 - Integer analog Output analog signal

bQSP_b - - Bool binary
(TRUE/FALSE)

Activation of quick stop

byFunction - - Byte - Function selection

dnIn1_p - - Double Integer position Phase input signal 1

nVp - - Integer - Gain

Introduction to IEC 61131-3 programming
Appendix

23L DDS-IEC61131 EN 2.0

6.3 Glossary

Sequential Function Chart Sequential Function Chart SFC (Sequential Function Chart - SFC) is a programming language to describe
sequential and parallel control processes with time and event control.

Action Boolean variable or instructions which can be controlled through an action block (in SFC).

Action block Activation description of actions in SFC.

Current event Intermediate result in IL of any data type.

Instruction List Instruction List (Instruction List - IL) is a common programming language for PLC systems similar to
Assembler.

SFC Abbreviation for Sequential Function Chart

IL Abbreviation for Instruction List

Organization unit (Sub-)program unit which is part of a PLC program. Often organization units can be loaded into the PLC
independently of each other. Compare POU.

CPU Central processing unit (Central Processing Unit) of, e.g., a PLC.

Declaration Indication of variables and FB instances in a declaration block by also indicating the identifier, data type
and FB type as well as initial values, ranges and field features.

Declaration block Summary of declarations for a variable type at the beginning of a POU.

Elementary data type A standard data type predefined by IEC 61131-3.

Function extensions A function can have a variable number of inputs.

FB Abbreviation for Function Block (Function Block), often, function blocks are also called ”Function
organization units”.

FB instance See Instance

FB type Name of a function block with request interface.

FBD Function Block Diagram, see Function Block Diagram

Function A POU of type Function

Function organization unit See Function block

Function block A POU of type Function_Block

Function Block Diagram The Function Block Diagram (Function Block Diagram) consists of a list of networks which enable the
user to create graphics that show any program process by means of connection elements.

FBD See Function Block Diagram

IL Instruction List, see Instruction List

Indirect FB call Call of an FB instance whose name has been transferred to a POU as VAR_IN_OUT parameter.

Instance Structured data set of an FB by declaration of a function block plus indication of the FB type.

LD Abbreviation for Ladder Diagram

Configuration The configuration (Configuration) defines the PLC structure and represents the highest level in the
IEC 61131-3 software model.

Ladder Diagram Ladder Diagram (Ladder Diagram - LD) is a programming language to describe networks with
simultaneously operating Boolean and electromechanical elements such as contacts and coils.

LD Ladder Diagram, see Ladder Diagram

POU Abbreviation for Program Organization Unit (Program Organization Unit - POU)

POU Program Organization Unit, see Program Organization Unit

Program Organization Unit The Program Organization Unit is an organization unit in IEC 61131-3 of type function, function block or
program. It builds up user programs hierarchically.

Resource A resource (Resource) is a central unit (CPU) of a configuration.

Step Status node in an SFC program. Actions referring to a step are started here.

SFC Sequential Function Chart, see Sequential Function Chart

PLC Programmable Logic Controller (Programmable Controller).

Introduction to IEC 61131-3 programming
Appendix

24 LDDS-IEC61131 EN 2.0

ST Abbreviation for Structured Text.

Standard functions All functions predefined by IEC 61131-3 to implement PLC typical functionality.

Standard organization units See Standard function blocks

Standard function blocks All function blocks (Function Blocks) predefined by IEC 61131-3 to implement PLC typical functionality.

Structured Text Structured Text (Structured Text) is a programming language to describe algorithms and execution control
by means of the latest high languages.

Task Definition of run time features of a program.

Transition Transition from one SFC step to the next by evaluation of the transition condition.

Type definition Definition of a user-specific data type based on already existing data types.

Variable Name of a data memory which can contain values determined by the data type or variable declaration.

Cycle The cycle of a (periodically called) user program.

Cycle time The cycle time is the time needed by the user progam for a cycle.

	Introduction to IEC 61131-3 programming
	1 Preface and general information
	1.1 For further information on IEC 61131-3 programming

	2 The software model
	2.1 Resources within a configuration
	2.1.1 Tasks

	2.2 Program Organization Units, POUs
	2.2.1 Programs
	2.2.2 Function blocks
	2.2.3 Functions

	2.3 Control restart

	3 The communication model
	3.1 Access paths
	3.2 Global variables
	3.3 Call parameters
	3.4 Communication organization units

	4 General language elements
	4.1 Identifiers
	4.2 Keywords
	4.3 Comments
	4.4 Literals
	4.5 Data types
	4.6 Variables

	5 Programming languages
	5.1 Instruction List (IL)
	5.2 Structured Text (ST)
	5.3 Sequential Function Chart (SFC)
	5.4 Function Block Diagram (FBD)
	5.5 Ladder Diagram (LD)

	6 Appendix
	6.1 IEC keywords
	6.2 Conventions for Lenze variable identifiers
	6.2.1 System block designation
	6.2.2 Indication of the variable type
	6.2.3 Indication of the data type
	6.2.4 Identifier
	6.2.5 Indication of the signal type
	6.2.6 Examples of variable identifiers

	6.3 Glossary

	Lesezeichen:

