
 

 

OOP in IEC 61131‐3 for experts 

Elegantly solving the handling of data and call information with OOP 

 
After the introduction to object-oriented programming in automation technology, the benefits of 
the use of interfaces and the inheritance of function blocks was explained in the second of the 
series of articles. But how does one deal with data? How does one evaluate information about 
implemented interfaces? With the answers to these questions, expert features of object-
oriented programming such as those available in the IEC 61131-3 programming system 
CODESYS are described. 
 
Data handling with properties 
 
As already explained, interfaces contain only methods – but function blocks also have data. 
Thus the question arises: how does one access this data via an interface? 
 
Simple answer: one writes a method that returns the desired data, such as "GetName" or 
"IsReady" for instance. If applied consistently, the application programmer can quickly create 
pairs of functions which are always of the same type, such as "GetName" / "SetName" or 
"IsReady" / "SetReady". Such pairs of methods, which essentially only enable access to a 
piece of data, can be combined into a property. 
 
Let us take as an example the interface IDrive from the preceding article in the series and 
create an extended interface called INamedDrive. 
 
 

 
Fig. 1: Simple property 
 
A property is thereby a combination of two methods that encapsulate the write access or read 
access to a piece of data. This presents itself as a variable to the user of the properties. The 
compiler automatically ensures the call of the correct access method or signals an error if this 



 

 

is not implemented. Hence, one would probably equip INamedDrive in the above example only 
with a reading access to the name, thus preventing writing. 
 
In the main block PLC_PRG (from the preceding article) we declare a function block 
CANopen_DriveB_Named, which implements the new interface. In the body of the module in 
Fig. 2 the property can now be accessed in the same way as a variable. 
 

 
Fig. 2: Instancing and use of FBs with extended interfaces 
 
A property can be problematic, however, if one then wishes to allow access to complex data 
types such as a structure. Usually the application programmer wishes to access only one 
element of a structure. A method behind that, however, always returns the entire structure. 
This means that if the data type Structure is transferred directly to a property, then too much 
data will be copied - and that has an effect on the runtime of the program. How can one get 
around this problem? The data type "REFERENCE TO" supplies the answer. 
 
A Reference is a variable that always refers to another variable. If one manipulates the 
reference, then one actually manipulates the referenced variable. The reference differs from 
the pointer by the fact that the reference is not explicitly de-referenced, but instead each 
access takes place directly to the referenced variable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

An example: 
 

 
Fig. 3: A simple reference 
 
Naturally the example in fig. 3 is not practical, it is intended merely to explain the use of 
references in practical applications. One of these is the return of data in the case of properties. 
 
For our sample project we assume a structure, DriverInfo, with the elements Name and 
Version. Instead of two properties for the name and the version, the entire information could 
also be returned as a structure. We give the function block Canopen_DriveB_Named an 
additional method. This does not return a simple data type, but a whole structure. 
 
 



 

 

 
Fig. 4: Complex data types and properties 
 

Properties thus offer the possibility to publish a functional access to data. This form of access 
corresponds to the demands of OOP for data encapsulation and at the same time provides the 
programmer with the convenience of simple data access. As explained in the example, the 
application programmer can also define such properties in an interface and as a result 
indirectly formulate a regulation for the data in a function block. 
 
A further possible use of properties is the return of scaled values: in this way a function block 
could store a value in the unit centimeters. With its own property, however, the value is 
returned in the unit inches. 
 
Data type queries on interfaces: casts 
 
The example leads us directly to the next topic, type conversion and type queries (casts). We 
defined an array of elements of the type IDrive in fig. 2 in the PLC_PRG. Only one element of 
the array additionally defines the specialized interface INamedDrive. It may be of importance at 
the place of use, however, whether the drive has a name or not, i.e. whether it implements the 
interface INamedDrive. To this end one must be able to query the type information of an object 
at runtime. 
 
CODESYS contains the operator __QUERYINTERFACE for this function. It expects two 
operands: on the one hand the interface object, from which one wishes to query another 
interface, and on the other an interface variable with the type which one wishes to check. The 
operator itself returns the result TRUE if the cast, i.e. the type query was successful. 



 

 

 
For the explanation we use the function block CheckDriveError (see 2nd part of the series of 
articles) and extend it by the output of an error text via the variable stError. The code part in fig. 
5 is easy to comprehend: __QUERYINTERFACE asks the drive transferred by the interface 
IDrive whether it additionally implements the interface INamedDrive. If that is the case, then 
stError returns an error message with the drive name instead of a general text. 
 
 

 
Fig. 5: Use of __QUERYINTERFACE for the generation of a plain text error message in a 
heterogeneous environment 
 
 
A further application of the casts is rarer, but nevertheless possible: an interface reference 
requires the instance to which it refers. The suitable operator for this in CODESYS is 
__QUERYPOINTER. 
 
__QUERYPOINTER also expects two operands: an interface reference and a pointer to a 
function block. However, the programmer must ensure in this case that the type of the 
POINTER is also correct after the cast. 
 

 
Fig. 6: Use of __QUERYPOINTER 



 

 

 
The piece of code in fig. 6 explains a possible use of the operator: an identifier is queried by an 
interface reference, which in this case corresponds to the type name. Hence, the programmer 
knows the type of the instance that points to the reference and he can continue working safely 
with the pointer. 
 
 
Conclusion 
If one continues consistently down the path to object-oriented application programming within 
IEC 61131-3, then properties assist in the encapsulation of data. Additional operators based on 
OOP also retain the overview in complex applications. The benefit: simply re-usable control 
programs. The language scope of the market-leading IEC 61131-3 programming system 
CODESYS fulfils the expectations of experienced application programmers in this regard. 
 


